みのり高等学校通信教育実施計画書

教科·科目	必履修	単位数	教科書	副教材
数学Ⅲ		4	東京書籍「数学Ⅲ Standard」	
評価方法	添削指導(計12回), 試験(年2回), 面接指導(年4回)での評価			

指導目標 数学的な見方・考え方を働かせ,数学的活動を通して,数学的に考える資質・能力を 次のとおり育成することを目指す。

- (1) 極限、微分法及び積分法についての概念や原理・法則を体系的に理解するとともに事象を数学化したり、数学的に解釈したり、数学的に表現・処理したりする技能を身に付けるようにする。
- (2) 数列や関数の値の変化に着目し、極限について考察したり、関数関係をより深く捉えて事象を的確に表現し、数学的に考察したりする力、いろいろな関数の局所的な性質や大域的な性質に着目し、事象を数学的に考察したり、問題解決の過程や結果を振り返って統合的・発展的に考察したりする力を養う。
- (3) 数学のよさを認識し積極的に数学を活用しようとする態度、粘り強く柔軟に考え数学的論拠に基づいて 判断しようとする態度、問題解決の過程を振り返って考察を深めたり、評価・改善したりしようとする態度や 創造性の基礎を養う。

〔評価の観点〕

【主体性】・数学のよさを認識し積極的に数学を活用し、粘り強く柔軟に考え数学的論拠に基づき判断している。 ・問題解決の過程を振り返って考察を深めたり、評価・改善をしている。

【知識·技能】

- ・極限、微分法及び積分法についての概念や原理・法則を体系的に理解している。
- ・事象を数学化したり、数学的に解釈したり、数学的に表現・処理したりすることに関する技能を身に付けている。 【思考・判断力・表現力】・数列や関数の値の変化に着目し、極限について考察したり、関数関係をより深く 事象を的確に表現し、数学的に考察したりする力を身に付けている。
- ・いろいろな関数の局所的な性質や大域的な性質に着目し、事象を数学的に考察したり、問題解決の過程や結果を振り返って統合的・発展的に考察したりする力を身に付けているO

添削課題	単元名	指導項目·概要	スクーリング実施計画(実施内容)
第1回	◆関数	1 分数関数とそのグラフ 2 無理関数とそのグラフ 3 逆数と合成関数	・分数関数のグラフの特徴について ・無理関数のグラフの特徴について ・逆関数と合成関数の意味について
10月18日 第2回 提出期限 10月18日	◆ 数列の極限	1 数列の極限 2 無限等比数列 3 無限級数	・数列の収束、発散と数列の極限の基本的な性質について ・無限等比数列が収束する条件について ・無限級数の収束と発散について
第3·4回 提出期限 11月1日	●関数の極限●機分	1 無限級数 2 いろいろな関数と極限 1 関数の連続性 2 導関数 3 積・商の微分法 4 合成関数の微分法 5 三角関数の導関数	・無限級数の収束と発散について ・指数関数、対数関数、三角関数などの極限について ・関数の連続性及び中間値の定理について ・導関数の定義について ・積・商の導関数について ・合成関数の微分法及び逆関数の微分法について ・三角関数の導関数について

添削課題	単元名	指導項目·概要	スクーリング実施計画(実施内容)
第5·6回	◆微分	1 対数関数・指数関数の 導関数2 高次導関数3 接線の方程式	・高次導関数について・自然対数の底e、対数関数の導関数、指数関数の導関数について・曲線の接線の方程式及び法線の方程式
提出期限 	◆微分の応用	4 関数の増減	について ・関数の増減、極値を求めることについて
第7·8回 第2·8回 提出期限 11月15日	◆微分の応用	1 第2次導関数とグラフ 2 最大と最小 3 方程式・不等式への応 用 4 速度・加速度 5 近似式	・曲線の凹凸に関する性質について ・微分法を用いて、関数の最大値・最小値を求 めることについて ・微分法を用いて、不等式を証明や方程式 の実数解の個数を調べることについて ・運動する点の速度・加速度について ・関数の近似式を求めることについて
第9回 第9回 提出期限 11月15日	◆積分とその応用	1 不定積分 2 置換積分法 3 部分積分法 4 いろいろな関数の不定 積分	・不定積分の基本的な性質について ・置換積分法について ・部分積分法について ・部分分数分解及び三角関数の加法定理 か ら導かれる積を和・差に直す公式について
	◆積分とその応用	1 定積分 2 定積分の置換積分法と 部分積分法 3 定積分で表された関数 4 定積分と区分求積法	・いろいろな関数の定積分について ・置換積分法や部分積分法を用いて、定積分の値を求めることについて ・積分と微分の関係について ・区分求積法の考え方について
第12回	◆積分とその応用	1面積 2体積 3曲線の長さと道のり	・いろいろな曲線で囲まれた図形の面積の 求め方について・立体の体積が定積分によって求められる ことについて・曲線の長さが定積分によって求められる ことについて
提出期限 11月29日			■後期単位認定試験 【12月2日~6日】(3年) ■後期単位認定試験 【2月17日~21日】(1,2年)